Electrically induced formation of uncapped, hollow polymeric microstructures
نویسندگان
چکیده
Uncapped, hollow polymeric microstructures were fabricated on a silicon substrate using electric field induced stretching and detachment. Initially, square or cylinder microposts were generated using a solvent-assisted capillary molding technique, and a featureless electrode mask was positioned on the top of the microstructure with spacers maintaining an air gap (∼20 μm). Upon exposure to an external electric field (1.0–3.0 V μm−1), the hollow microstructures were destabilized and stretched by the well-known electrohydrodynamic instability, resulting in contact of the top polymer surface with the mask. Subsequently, detachment of the capping layer occurred upon removal of the mask due to larger adhesion forces at the polymer/mask interface than cohesion forces of the polymer. These hollow microstructures were tested to capture the budding yeast, Saccharomyces cerevisiae, for shear protection. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
Fabrication and Characterization of Glassy Carbon MEMS
This paper describes the fabrication of free-standing high-carbon microstructures by softlithographic techniques; these structures ranged in complexity from simple beams to complex, suspended deflectors. Microstructures of polymeric precursors (copolymers of furfuryl alcohol-phenol) to high-carbon solids were fabricated using poly(dimethylsiloxane) (PDMS) molds. Carbonization of these microstru...
متن کاملStructure Change of Polyethersulfone Hollow Fiber Membrane Modified with Pluronic F127, Polyvinylpyrrolidone, and Tetronic 1307
Hydrophilic polyethersulfone (PES) hollow fiber membranes were prepared via non-solvent induced phase separation (NIPS) by addition of polymeric additives as a membrane modifying agent. The effect of the addition of hydrophilic surfactant Pluronic F127, Polyivinylpyrrolidone (PVP), and Tetronic 1307 on the performance of the final PES hollow-fiber membrane was investigated. The morphology of fa...
متن کاملFormation of Polymeric Hollow Microcapsules and Microlenses Using Gas-in-Organic-in-Water Droplets
This paper presents methods for the formation of hollow microcapsules and microlenses using multiphase microdroplets. Microdroplets, which consist of a gas core and an organic phase shell, were generated at a single junction on a silicon device without surface treatment of the fluidic channels. Droplet, core and shell dimensions were controlled by varying the flow rates of each phase. When the ...
متن کاملFormation of complex polymeric microstructures through physical self-organization and capillary dynamics
We present a generic way of forming various complex polymeric microstructures using physical self-organization and capillary dynamics. A simple lithographic tool called capillary force lithography is utilized for this purpose, in which the pattern formation is driven by capillary force, not involving any external force or modification. In this method, a patterned polydimethylsiloxane mold is pl...
متن کاملRapid Formation of Acrylated Microstructures by Microwave-Induced Thermal Crosslinking.
We present a rapid and highly efficient method to form microstructure of poly(ethylene glycol) (PEG)-based acrylates by microwave-induced thermal crosslinking. PEG-based polymeric microstructures such as polymer microarrays and microwells were fabricated on 3-(trimethoxysilyl)propyl methacrylate (TMSPMA)-coated glass slides that were placed on top of a silicon wafer. In comparison to ultraviole...
متن کامل